Towards better Machine Translation Quality for the German-English Language Pairs
نویسندگان
چکیده
The Edinburgh submissions to the shared task of the Third Workshop on Statistical Machine Translation (WMT-2008) incorporate recent advances to the open source Moses system. We made a special effort on the German– English and English–German language pairs, leading to substantial improvements.
منابع مشابه
Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation
We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no changes to the model architecture from a standard NMT system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes an encoder, decoder and a...
متن کاملThe TALP-UPC Neural Machine Translation System for German/Finnish-English Using the Inverse Direction Model in Rescoring
In this paper, we describe the TALPUPC participation in the News Task for German-English and Finish-English. Our primary submission implements a fully character to character neural machine translation architecture with an additional rescoring of a n-best list of hypothesis using a forced back-translation to the source sentence. This model gives consistent improvements on different pairs of lang...
متن کاملNeural Machine Translation Training in a Multi-Domain Scenario
In this paper, we explore alternative ways to train a neural machine translation system in a multi-domain scenario. We investigate data concatenation (with fine tuning), model stacking (multi-level fine tuning), data selection and weighted ensemble. We evaluate these methods based on three criteria: i) translation quality, ii) training time, and iii) robustness towards out-of-domain tests. Our ...
متن کاملThe Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملMachine translation: statistical approach with additional linguistic knowledge
In this thesis, three possible aspects of using linguistic (i.e. morpho-syntactic) knowledge for statistical machine translation are described: the treatment of syntactic differences between source and target language using source POS tags, statistical machine translation with a small amount of bilingual training data, and automatic error analysis of translation output. Reorderings in the sourc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008